Web Toolbar by Wibiya

Jul 24, 2016

Pembangkit Listrik Tenaga Sampah (PLTSa)


Pembangkit listrik tenaga sampah atauPembangkit listrik sampah atauPembangkit listrik tenaga biomasa sampah adalah pembangkit listrik thermal dengan uap supercritical steam dan berbahan bakar sampah atau gas sampah methan. Sampah atau gas methan sampah dibakar menghasilkan panas yang memanaskan uap pada boiler steam supercritical. Uap kompresi tinggi kemudian menggerakkan turbin uap dan flywheel yang tersambung pada generator dinamo dengan perantara gear transmisi atau transmisi otomatis sehingga menghasilkan listrik. Daya yang dihasilkan pada pembangkit ini bervariasi antara 500 KW sampai 10 MW. Bandingkan dengan PLTU berbahan bakar batubara dengan daya 40 MW sampai 100 MW per unit atau PLT nuklir berdaya 300 MW sampai 1200 MW per unit.
Proses Kerja PLTsa terdapat dua macam yaitu: Proses pembakaran dan proses teknologi fermentasi metana

Proses pembakaran
PLTSa dengan proses pembakaran menggunakan proses konversi Thermal dalam mengolah sampah menjadi energi. Proses kerja tersebut dilakukan dalam beberapa tahap yaitu:
Pemilahan dan Penyimpanan Sampah
Limbah sampah kota yang berjumlah ± 500-700 ton akan dikumpulkan pada suatu tempat yang dinamakan Tempat Pengolahan Akhir (TPA).Pemilahan sampah sesuai dengan kriteria yang dibutuhkan PLTSa.Sampah ini kemudian disimpan didalam bunker yang menggunakan teknologi RDF (Refused Derived Fuel).Teknologi RDF ini berguna dalam mengubah limbah sampah kota menjadi limbah padatan sehingga mempunyai nilai kalor yang tinggi.Penyimpanan dilakukan selama lima hari hingga kadar air tinggal 45 % yang kemudian dilanjutkan dengan pembakaran.
Pembakaran Sampah
Tungku PLTSa pada awal pengoperasiannya akan digunakan bahan bakar minyak.Setelah suhu mencapai 850oC – 900oC, sampah akan dimasukkan dalam tungku pembakaran (insenerator) yang berjalan 7800 jam.Hasil pembakaran limbah sampah akan menghasilkan gas buangan yang mengandung CO, CO2, O2, NOx, dan Sox. Hanya saja, dalam proses tersebut juga terjadi penurunan kadar O2. Penurunan kadar O2 pada keluaran tungku bakar menyebabkan panas yang terbawa keluar menjadi berkurang dan hal tersebut sangat berpengaruh pada efisiensi pembangkit listrik.
Pemanasan Boiler
Panas yang dipakai dalam memanaskan boiler berasal dari pembakaran sampah. Panas ini akan memanaskan boiler dan mengubah air didalam boiler menjadi uap.
Penggerakan Turbin dan Generator Serta Hasil
Uap yang tercipta akan disalurkan ke turbin uap sehingga turbin akan berputar. Karena turbin dihubungkan dengan generator maka ketika turbin berputar generator juga akan berputar. Generator yang berputar akan mengahsilkan tenaga listrik yang kan disalurkan ke jaringan listrik milik PLN. Dari proses diatas dengan jumlah sampah yang berkisar 500-700 ton tiap harinya dapat diolah menjadi sumber energi berupa listrik sebesar 7 Megawatt

Teknologi Fermentasi Metana

Pada tahun 2002, di Jepang, telah dicanangkan “biomass-strategi total Jepang” sebagai kebijakan negara. Sebagai salah satu teknologi pemanfaatan biomass sumber daya alam dapat diperbaharui yang dikembangkan di bawah moto bendera ini, dikenal teknologi fermentasi gas metana. Sampah dapur serta air seni, serta isi septic tank diolah dengan fermentasi gas metana dan diambil biomassnya untuk menghasilkan listrik, lebih lanjut panas yang ditimbulkan juga turut dimanfaatkan. Sedangkan residunya dapat digunakan untuk pembuatan kompos.
Karena sampah dapur mengandung air 70–80%, sebelum dibakar, kandungan air tersebut perlu diuapkan. Di sini, dengan pembagian berdasarkan sumber penghasil sampah dapur serta fermentasi gas metana, dapat dihasilkan sumber energi baru dan ditingkatkan efisiensi termal secara total. Pemanfaatan Gas dari Sampah untuk Pembangkit Listrik dengan teknologi fermentasi metana dilakukan dengan dengan metode sanitary landfill yaitu, memanfaatkan gas yang dihasilkan dari sampah (gas sanitary landfill/LFG).
Landfill Gas (LFG) adalah produk sampingan dari proses dekomposisi dari timbunan sampah yang terdiri dari unsur 50% metan (CH4), 50% karbon dioksida (CO2) dan <1% non-methane organic compound (NMOCs). LFG harus dikontrol dan dikelola dengan baik karena lanjut Dia, jika hal tersebut tidak dilakukan dapat menimbulka smog (kabut gas beracun), pemanasan global dan kemungkinan terjadi ledakan gas, sistem sanitary landfill dilakukan dengan cara memasukkan sampah kedalam lubang selanjutnya diratakan dan dipadatkan kemudian ditutup dengan tanah yang gembur demikian seterusnya hingga menbentuk lapisan-lapisan.
Untuk memanfatkan gas yang sudah terbentuk, proses selanjutnya adalah memasang pipa-pipa penyalur untuk mengeluarkan gas. Gas selanjutnya dialirkan menuju tabung pemurnian sebelum pada akhirnya dialirkan ke generator untuk memutar turbin. Dalam penerapan sistem sanitary landfill yang perlu diperhatikan adalah, luas area harus mencukupi, tanah untuk penutup harus gembur, permukaan tanah harus dalam dan agar ekonomis lokasi harus dekat dengan sampah sehingga biaya transportasi untuk mengangkut tanah tidak terlalu tinggi.

Potensi sampah dan biomassa sudah  pasti ada di setiap daerah, karena setiap hari manusia secara natural selalu menghasilkan sampah demi memenuhi kebutuhannya. Namun memang, potensi sampah dan biomassa di setiap daerah berbeda sebanding dengan jumlah penduduknya. Makin banyak jumlah penduduk di setiap daerah, potensi sampah dan biomassa yang dihasilkan makin besar pula.

Solusi yang diberikan oleh pemerintah daerah adalah landfill yaitu pembuangan sampah di suatu daerah yang disebut dengan TPA (Tempat Pembuangan Akhir) serta pengolahan yang dilakukan secara ‘tidak efisien’. Dikatakan demikian karena sampah – sampah organik dikumpulkan di TPA dan diharapkan terdegenerasi kembali ke tanah secara alami sedangkan sampah anorganik dikumpulkan lagi – lagi secara tidak efisien oleh pemulung.

Kekurangan dari landfill ini adalah dibutuhkannya lahan yang luas dan menggunungnya sampah organik karena penambahan sampah oleh manusia tidak sebanding dengan degenerasi sampah oleh bakteri – bakteri pengurai. Selain itu berkaitan dengan global warming, penumpukan sampah dengan cara ini berpotensi menghasilkan gas methan (combustible gas) yang notabene menjadi salah satu penyebab potensi pemanasan global dan penipisan lapisan ozon.

Manajemen Pengelolaan Sampah

Masalah sampah sudah menjadi masalah global, dibuktikan oleh keluarnya protokol Kyoto yang mengikat semua negara agar dapat mengolah limbahnya dengan lebih serius. Pemerintah Indonesia setidaknya telah mengedarkan Undang – Undang Nomor 18 Tahun 2008 Tentang Pengelolaan Sampah dan dimungkinkan untuk adanya Peraturan Perundangan lain yang dapat melengkapi Undang – Undang ini.

Ini menjadi bukti keseriusan pemerintah Indonesia dalam mengelola sampah dan sebagai langkah penting pemerintah dalam pembangunan lingkungan hidup yang lebih baik dengan diikuti oleh penerapan di lapangan yang tertib, berkesinambungan, dan berkelanjutan. Tinggal bagaimana regulasi manajemen pengelolaan sampah yang berupa Undang – Undang ini diterapkan di lapangan oleh seluruh aparat yang berkaitan dan masyarakat secara keseluruhan. Regulasi pendukung seperti peraturan daerah dan pelaksanaan kompensasi secara tertib juga sangat penting dalam kaitannya dengan penerapan di tingkat daerah. Tanpa Peraturan Daerah dan pelaksanaan kompensasi secara tertib, tidak akan ada regulasi yang mengikat masyarakat, sehingga masyarakat merasa perlu untuk melakukan manajemen pengelolaan sampah ini dalam lingkup rumah tangga maupun lingkup yang lebih luas.

Dengan manajemen sampah, TPA bukan lagi menjadi tempat penampungan sampah melainkan akan menjadi tempat penampungan residu sampah yaitu sampah – sampah khusus yang karena sifat dan bahannya tidak bisa didaur ulang lagi, sampah organik, maupun sampah anorganik yang tidak bisa di daur ulang karena nilai ekonomisnya sangat rendah dan sulit untuk dimanfaatkan. Untuk sampah – sampah khusus dibutuhkan teknologi tertentu untuk mengelolanya, sedangkan sampah organik dan anorganik yang ditampung sebenarnya memiliki potensi energi di dalamnya dengan penanganan tertentu. Teknologi yang kemudian ditawarkan untuk mengolah potensi ini adalah teknologi konversi energi.

Konversi Biogas

Sampah organik (termasuk didalamnya sisa makanan) dapat dikonversi menjadi listrik dengan menggunakan teknologi konversi sampah menjadi gas methan (combustible gas), lalu menjadi listrik yang disebut dengan biogas. Sedangkan sampah organik yang berupa biomassa dapat dikonversikan menjadi listrik dengan cara direct combustion yang dikenal dengan PLTSa (Pembangkit Listrik Tenaga Sampah).

Secara alami, sampah organik dengan bantuan bakteri pengurai menghasilkan gas methan sebagai hasil sampingan dari kegiatan degenerasi penguraian sampah. Gas methan (combustible gas) ini menurut para peneliti, jika terbuang di alam berpotensi sebagai perusak lapisan ozon dan meningkatkan efek global warming. Untuk itulah menjadi penting pemanfaatan gas methan  menjadi listrik karena selain dapat mengurangi dampak pemanasan global, juga dapat menambah suplai listrik di daerah.

Secara umum, unsur dalam sampah yang dapat dimanfaatkan menjadi biogas adalah sebesar 69% yaitu 42% sampah organik dan 27% sampah sisa makanan (Mauliva,2009). Untuk mempercepat terjadinya biogas dalam proses fermentasi sampah organik, biasanya digunakan katalisator berupa penambahan bakteri pengurai sampah yaitu bakteri saprofit (wikipedia). Teknologi konversi biogas menjadi listrik yang digunakan misalnya adalah PLTGU (Pembangkit Listrik Tenaga Gas Uap) yang bekerja berdasar siklus kombinasi (siklus Rankine dan Brayton) yang merupakan sistem pembangkit listrik yang memanfaatkan sejumlah panas terbuang (exhaust gas) di turbin gas PLTG yang temperaturnya relatif tinggi untuk menghasilkan uap pada turbin uap (Rais,2006).

Namun, teknologi konversi biogas ini masih terkendala terhadap isu ketahanan dan keawetan material yang digunakan karena biogas yang salah satu komposisinya adalah H2S (hidrogen sulfida) mengakibatkan bahan yang dilewatinya rentan terhadap korosi. Sehingga diperlukannya inovasi rekayasa teknologi material yang dapat berperan meningkatkan kekuatan material yang digunakan.

Biaya konstruksi stasiun pembakar sampah modern memakan biaya sebesar US$200 juta atau US$ 3,570 per kWh kapasitas terpasang. Dengan memertimbangkan biaya pembuangan dan pengelolaan sampah, investasi di teknologi energi dari sampah ini bisa semakin murah.

Berikut contoh fasilitas pengolahan energi dari sampah di berbagai negara.

Neastved, Denmark. Fasilitas pembangkit listrik tenaga sampah ini mulai beroperasi pada 2006. Lokasi ini mampu mengolah sampah sebanyak 8 ton/jam atau 115.000 ton sampah/tahun. Produksi listriknya mencapai 13 MW/tahun.
Sundvall, Swedia. Fasilitas yang mulai beroperasi pada tahun 2007 ini mampu mengolah sampah dengan kapasitas 25 ton/jam atau 200.000 ton sampah/tahun. Produksi listriknya mencapai 120.000 MW/tahun.
Linkoping, Swedia. Fasilitas ini mulai beroperasi pada 2002 dan mampu mengolah sampah dengan kapasitas 24 ton/jam atau 2 juta ton sampah/tahun. Produksi listriknya mencapai 20 MW/tahun.
Esborg, Denmark. Fasilitas ini mulai beroperasi pada 2001 dan mampu mengolah sampah sebesar 24 ton/jam atau 180.000 ton sampah/tahun. Listrik yang diproduksi mencapai 16 MW/tahun.
Fairfax, Virgina, Amerika Serikat. Fasilitas ini mulai beroperasi pada 1990 dan mampu mengolah sampah sebesar 125 ton/jam atau 930.000 ton/tahun dengan produksi listrik mencapai 80 MW/tahun.
Spokane, Washington, Amerika Serikat. Fasilitas ini mulai beroperasi pada 1991. Kapasitas pengolahan sampahnya mencapai 30 ton/jam atau 248 ton/tahun. Daya listrik yang dihasilkan mencapai 16,1 MW/tahun.
Khusus untuk pembangkit listrik tenaga sampah di Fairfax, Virginia, fasilitas ini tercatat mampu mendistribusikan listrik ke 75.000 rumah dan menghemat 2 juta barel minyak setiap tahun.

Sumber : wikipedia.or.id dan hijauku.com